Overview of Operations

27 April 2010

Mark Swenson
Chief Science Officer
N34 – AOPS, Models & Data

Supercomputing Excellence for Fleet Safety and Warfighter Decision Superiority...
FNMOC Mission

• Mission – We produce and deliver weather, ocean, and climate information for Fleet Safety, Warfighting Effectiveness, and National Defense

• Numerical Weather Prediction is the core of our business
 – Global and Regional Operational Models
 – Scheduled and On-Demand Products
Organizational Profile

- Highly technical, educated, and warfare experienced workforce consisting of military, civilians, and contractors
 - 23 Officers
 - 48% with MS Degree
 - ~22% will attend NPS next tour
 - wardroom includes: 1 x UK PEP, 1 x USAF PEP (deployed to Afghanistan), 1 x OIC, FNMOD Asheville
 - 24 Enlisted
 - 63% with Advanced Navy Specialty Training
 - includes 2 x IA, 1 x TAD to BHR
 - 140 FTE and ~10 Contractors:
 - Predominantly Physical Science and IT specialties (Meteorology, Oceanography, Computer Sciences)
 - PhD – 5, MS Degree - 23%, BS Degree - 34%

- $26.4M annual TOA
Operations? What’s That?

• What does operational mean?
 – Directly supports Naval operations (deployed forces)
 • Information assured
 • High levels of reliability and availability
 • 24 hours a day, every day
 – Paid for by operations & maintenance funding
 • No research and development funding
 – Automation is essential
 – Latency is key
Models and Applications Points

- NOGAPS/NAVDAS-AR foundation of production cycle
- Models and applications are interconnected
 - Medium-term plan is to directly incorporate aerosol predictions into NOGAPS framework
- Wide range of capabilities are supported by the modeling cycle
Models and Applications

Global Model

- Ocean Acoustic Forecasting
- Aircraft Routing
- Visibility/Dust Forecasts
- Electro-Optical Forecasts
- Search and Rescue
- CEEMS
- WRIP
- Long-Range Planning

- Ensemble Model
 - Aerosol Model
 - Mesoscale Model

- Wave Model
- Optimum Track Ship Routing
- Automated High Seas / Wind Warnings

- Target Weapon Systems
- Ice Forecasts
- Tropical Cyclone Forecasts
- Ballistic Wind Computations

Supercomputing Excellence for Fleet Safety and Warfighter Decision Superiority
NOGAPS in the OPSRUN

- NOGAPS is run three times for each of four valid times per day.
 - Prelim provides BCs for tropical cyclone model and early mesoscale runs
 - Obs latency 0-4 hrs
 - Realtime obs latency 0.5-6.5 hrs
 - Posttime obs latency 5-11 hrs
- Data from late in the obs window has more impact than data from early in the obs window
- Job initiation is event-driven so that each job starts only when prerequisite jobs have completed
Current A2 Operational Run

ATMOSPHERIC MODELS

NOGAPS

COAMPS

ET CETERA...
OPSRUN Points

• Major peak in activity +4 - 6 hrs each watch
• Peak pushes the limits
 – Changes that require additional resources must be managed very carefully
 – 10% increase in run time can be too much
Normal OPAL OPS Run

Opal Nodes Used - Ops/Betaops Jobs 00/12Z 5 May 09 (Daily Average = 33%)
Observation Counts Points

- About 1 million observations are exploited in the data assimilation each cycle.
Observation Counts from Innovation Files

NOGAPS assimilates ~ 1 million observations per run
Data Sources Points

- We get every type of data that we are in a position to exploit
- All data processing must be automated and robust
Ship Weather Reports
Buoy Observations
RADIOSONDE Observations
AIRCRAFT Reports

UNCLASSIFIED

AIRCRAFT Coverage
2007050100 late

AMAR
Canadian AMAR
count ---- 9234 count ---- 2923 count ---- 11459
locations ---- 8197 locations ---- 2793 locations ---- 9925
DMSP Polar SSMI/S
(Water Vapor, Rain Rate, Wind Speed)
Geostationary Satellite Winds
AMSU-A Coverage

AMSU Radiance Scan Locations Coverage
2008091200 late

<table>
<thead>
<tr>
<th></th>
<th>NOAA 15</th>
<th></th>
<th>NOAA 16</th>
<th></th>
<th>NOAA 18</th>
<th></th>
<th>METOP-A</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>62920</td>
<td>count</td>
<td>63820</td>
<td>count</td>
<td>64420</td>
<td>count</td>
<td>79380</td>
</tr>
<tr>
<td>locations</td>
<td>79976</td>
<td>locations</td>
<td>81050</td>
<td>locations</td>
<td>81032</td>
<td>locations</td>
<td>79117</td>
</tr>
</tbody>
</table>

UNCLASSIFIED
ASCAT METOP Coverage
ATOVS Coverage

ATOVS Soundings Coverage

<table>
<thead>
<tr>
<th>ATOVS 15</th>
<th>ATOVS 16</th>
<th>ATOVS 18</th>
<th>METOP-A</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>count</td>
<td>count</td>
<td>count</td>
</tr>
<tr>
<td>44297</td>
<td>0</td>
<td>44224</td>
<td>44971</td>
</tr>
<tr>
<td>locations</td>
<td>locations</td>
<td>locations</td>
<td>locations</td>
</tr>
<tr>
<td>44297</td>
<td>0</td>
<td>44224</td>
<td>44971</td>
</tr>
</tbody>
</table>

UNCLASSIFIED
AVHRR Polar Feature Track Winds

UNCLASSIFIED
WINDSAT Total Precipitable Water & Winds
Summary

• Automation and low latency are important for operations
• Desired latency is 0.5 – 6.5 hours, depending on when the observation occurs
• Maximum latency is 5 – 11 hours
• New capabilities that require additional computer resources must be managed very carefully
Questions ?