

Predictability, forecastability, and observability

Jim Hansen

jim.hansen@nrlmry.navy.mil

NRL Probabilistic-prediction Research Office

Predictability

- The rate (or factor) of divergence of nearby trajectories (norm dependent)
- An intrinsic, yet unknowable, system property
- The aim is to learn about the system dynamics by asymptoting towards the system's intrinsic predictability.
- Ultimate aim is to attempt to increase forecast skill
- Inherently probabilistic

A spectrum of -abilities

- Predictability
 - How trajectories of the true system diverge
- Model predictability
 - How trajectories of a given model diverge
- Forecastability
 - How a model trajectory diverges from a true system trajectory

Back story

- Aerosols are an important parameter for Navy operations.
- Aerosol estimation and prediction is a hard problem fraught with uncertainties.
- The NRL Probabilistic-prediction Research Office aims to advance the estimation, communication, and use of METOC uncertainty for improved science and improved decision making.
- Got to talking with Jeff and Doug about predictability and uncertainty, but quickly learned that there are extreme observational challenges as well.

Observability

- The ability to estimate the system state through indirect observations
 - Predictability studies can tell us how close our initial conditions need to be to the "true" state in order to produce useful forecasts
 - Observability speaks to constraining the initial state to the necessary level
 - what we need to observe
 - with what accuracy
 - with what spatial distribution
 - with what frequency

Indirect: sparse observations

Indirect: correlated variables

COAMPS: Correlation between AOD at a point and 10m dust concentration

Battlespace on Demand

Tier 3 – the Decision Layer

- Options / Courses of Action
- Quantify Risk
- Asset Allocation / Timing

Tier 2 – the Performance Layer

Tier 1 – the (forecast)
Environment
Layer

Initial and Boundary Conditions

Opportunities

- What about T2 and T3 in the context of civilian aerosols?
- T2 examples
 - Air quality
 - Volcanic ash impacts
- T3 examples
 - Advisories
 - Policy

Battlespace on Demand

Global Aerosol Community?

Tier 3:

Safety of navigation/operations Air quality mitigation/permitting Climate change mitigation/adaptation

<u>Tier 2:</u>

PM2.5/PM10 Plume locations Radiative forcing

Tier 3:

Operational forecasts models Long term re-analyses Climate model predictions

Same as DoD construct: many data providers, models, required performance metrics. Ultimately, need to aid many customers

Experiments

Satellite **Products**

Satellite **Products**

Networks

Questions

Science

- What types of observing systems or networks should be put in place to best advance the science and/or forecast products?
- What are the relevant prediction problems and norms?

Culture

 Does the aerosol community really care about "broader impacts", or are the basic science questions motivation enough?

Strategy

— How far should the aerosol community move in the T2/T3 direction? Is throwing your product over the fence good enough, or do you need stronger T2/T3 links to justify and motivate your T0/T1 efforts?

