Using Airborne HSRL Measurements to Evaluate and Understand Aerosol Models

Richard Ferrare1, Chris Hostetler1, John Hair1, Sharon Burton1, Anthony Notari1, Anthony Cook1, Dave Harper1, Ray Rogers1, Amin Nehrir1, Xu Liu1, Tim Berkoff1, Carolyn Butler2, James Collins2, Marta Fenn2, Amy Jo Scarino2, Marian Clayton2, Patricia Sawamura2, Detlef Müller2, Eduard Chemyakin2, Bruce Anderson1, Brent Holben3, Pete Colarco3, Arlindo da Silva3, Cynthia Randles3, Jerome Fast4, Angela Benedetti5, Samuel Remy6, James Campbell7, Doug Westphal7

1NASA Langley Research Center, Hampton, VA USA (richard.a.ferrare@nasa.gov); 2SSAI/NASA/LaRC, Hampton, VA USA
3NASA Goddard Space Flight Center, Greenbelt, MD USA
4Pacific Northwest National Lab, Richland, WA USA
5ECMWF, Shinfield Park, Reading, Berkshire UK
6Laboratoire de Météorologie Dynamique, Paris, France
7Naval Research Lab, Monterey, CA, USA
Motivation and Objectives

Motivation:
- Global forecasting centers (e.g. ECMWF, NASA, NRL, NOAA, JMA) are increasingly using lidar (e.g. CALIOP, CATS) data to constrain aerosol vertical distributions
- Aerosol model verification using independent and calibrated lidar data is of great interest

Objectives:
- Examine aerosol model products using calibrated aerosol profiles acquired by the NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidars (HSRL-1, HSRL-2, DIAL/HSRL)
 - Mixed Layer heights
 - Aerosol optical thickness (AOT)
 - Aerosol extinction profiles
 - Aerosol intensive parameters (lidar ratio, color ratios, depolarization)
 - Aerosol types
 - Retrievals of effective radius, concentration, PM$_{2.5}$
Airborne HSRL Measurements
Currently, three NASA LaRC Airborne HSRL systems provide aerosol profile measurements

- All systems use HSRL technique to independently measure calibrated aerosol backscatter and extinction profiles (and derive layer AOT)
- Common aerosol data products
 - Backscatter Profiles (532, 1064 nm)
 - Depolarization Profiles (532, 1064 nm)
 - Extinction Profiles (532 nm)
 - AOT Profiles (532 nm)
 - Qualitative aerosol classification
 - Mixed Layer heights
- DIAL/HSRL
 - Long (~30 year) heritage of providing ozone and aerosol measurements; HSRL operations began in 2012
 - Long-range operations from NASA DC-8
 - Provides simultaneous aerosol and ozone profiles above and below DC-8

- **HSRL-1**
 - Began operations in 2006
 - Operations typically from LaRC King Air, P-3, or C-130
 - Modified to also provide sub-surface ocean profiling

- **HSRL-2**
 - Began operations in 2012
 - Includes additional backscatter, extinction, and depolarization profiles at 355 nm and ozone
 - Retrievals of aerosol size, concentration
 - Demonstrated operations from NASA ER-2
Field Mission Details

<table>
<thead>
<tr>
<th>Field Mission</th>
<th>Dates</th>
<th>Location</th>
<th>Instrument</th>
<th>Sponsor</th>
</tr>
</thead>
<tbody>
<tr>
<td>MILAGRO/INTEX</td>
<td>3/2006</td>
<td>Mexico City</td>
<td>HSRL-1</td>
<td>DOE</td>
</tr>
<tr>
<td>TexAQS/GOMAecs</td>
<td>9/2006</td>
<td>Houston</td>
<td>HSRL-1</td>
<td>DOE</td>
</tr>
<tr>
<td>San Joaquin Valley</td>
<td>2/2007</td>
<td>California</td>
<td>HSRL-1</td>
<td>EPA</td>
</tr>
<tr>
<td>CHAPCS/CLASSIC</td>
<td>6/2007</td>
<td>Oklahoma</td>
<td>HSRL-1</td>
<td>DOE</td>
</tr>
<tr>
<td>Caribbean 1</td>
<td>1/2008-2/2008</td>
<td>Caribbean</td>
<td>HSRL-1</td>
<td>NASA</td>
</tr>
<tr>
<td>ARCTAS Spring</td>
<td>4/2008</td>
<td>Alaska</td>
<td>HSRL-1</td>
<td>NASA</td>
</tr>
<tr>
<td>ARCTAS Summer</td>
<td>6/2008-7/2008</td>
<td>NW Canada</td>
<td>HSRL-1</td>
<td>NASA</td>
</tr>
<tr>
<td>Birmingham</td>
<td>9/2008-10/2008</td>
<td>Alabama</td>
<td>HSRL-1</td>
<td>NASA</td>
</tr>
<tr>
<td>RACORO</td>
<td>6/2009</td>
<td>Oklahoma</td>
<td>HSRL-1</td>
<td>DOE</td>
</tr>
<tr>
<td>Ocean Subsurface</td>
<td>9/2009</td>
<td>East Coast</td>
<td>HSRL-1</td>
<td>NASA</td>
</tr>
<tr>
<td>CALIPSO Validation</td>
<td>4/2010</td>
<td>Eastern US</td>
<td>HSRL-1</td>
<td>NASA</td>
</tr>
<tr>
<td>CALIPSO Gulf Spill</td>
<td>5/2010, 7/2010</td>
<td>Gulf of Mexico</td>
<td>HSRL-1</td>
<td>NASA</td>
</tr>
<tr>
<td>CalNEX</td>
<td>5/2010</td>
<td>Los Angeles</td>
<td>HSRL-1</td>
<td>DOE/NASA</td>
</tr>
<tr>
<td>CARES</td>
<td>6/2010</td>
<td>Sacramento</td>
<td>HSRL-1</td>
<td>DOE/NASA</td>
</tr>
<tr>
<td>Caribbean 2</td>
<td>8/2010</td>
<td>Caribbean</td>
<td>HSRL-1</td>
<td>NASA</td>
</tr>
<tr>
<td>DISCOVER-AQ</td>
<td>7/2011</td>
<td>DC-Baltimore</td>
<td>HSRL-1</td>
<td>NASA</td>
</tr>
<tr>
<td>EPA</td>
<td>8/2011</td>
<td>SE Virginia</td>
<td>HSRL-1</td>
<td>NASA</td>
</tr>
<tr>
<td>DEVOTE</td>
<td>10/2011</td>
<td>SE US</td>
<td>HSRL-1</td>
<td>NASA</td>
</tr>
<tr>
<td>CALIPSO Validation</td>
<td>3/2012</td>
<td>Eastern US</td>
<td>HSRL-1</td>
<td>NASA</td>
</tr>
<tr>
<td>DC3</td>
<td>5/2012-6/2012</td>
<td>Central US</td>
<td>DIAL/HSRL</td>
<td>NASA</td>
</tr>
<tr>
<td>TCAP</td>
<td>7/2012</td>
<td>Cape Cod</td>
<td>HSRL-2</td>
<td>DOE</td>
</tr>
<tr>
<td>Azores</td>
<td>10/2012</td>
<td>Azores</td>
<td>HSRL-1</td>
<td>NASA</td>
</tr>
<tr>
<td>DISCOVER-AQ</td>
<td>1/2013-2/2013</td>
<td>Central CA</td>
<td>HSRL-2</td>
<td>NASA</td>
</tr>
<tr>
<td>SEACARS</td>
<td>8/2013-9/2013</td>
<td>CONUS</td>
<td>DIAL/HSRL</td>
<td>NASA</td>
</tr>
<tr>
<td>DISCOVER-AQ</td>
<td>9/2013</td>
<td>Houston</td>
<td>HSRL-2</td>
<td>NASA</td>
</tr>
<tr>
<td>CALIPSO Validation</td>
<td>6/2014</td>
<td>Eastern US</td>
<td>HSRL-1</td>
<td>NASA</td>
</tr>
<tr>
<td>SABOR</td>
<td>7/2014-8/2014</td>
<td>Atlantic Ocean</td>
<td>HSRL-1</td>
<td>NASA</td>
</tr>
<tr>
<td>DISCOVER-AQ</td>
<td>7/2014-8/2014</td>
<td>Denver</td>
<td>HSRL-2</td>
<td>NASA</td>
</tr>
<tr>
<td>NAAMES</td>
<td>11/2015</td>
<td>W North Atlantic</td>
<td>HSRL-1</td>
<td>NASA</td>
</tr>
<tr>
<td>KORUS-AQ</td>
<td>5/2016-6/2016</td>
<td>South Korea</td>
<td>DIAL/HSRL</td>
<td>NASA</td>
</tr>
<tr>
<td>NAAMES</td>
<td>5/2016-6/2016</td>
<td>W North Atlantic</td>
<td>HSRL-1</td>
<td>NASA</td>
</tr>
<tr>
<td>ORACLES</td>
<td>8/2016-9/2016</td>
<td>Namibia/ S East Atlantic</td>
<td>HSRL-2</td>
<td>NASA</td>
</tr>
<tr>
<td>ORACLES</td>
<td>8/2017</td>
<td>Namibia/ S East Atlantic</td>
<td>HSRL-2</td>
<td>NASA</td>
</tr>
<tr>
<td>NAAMES</td>
<td>9/2017-10/2017</td>
<td>W North Atlantic</td>
<td>HSRL-1</td>
<td>NASA</td>
</tr>
<tr>
<td>ORACLES</td>
<td>11/2018</td>
<td>Namibia/ S East Atlantic</td>
<td>HSRL-2</td>
<td>NASA</td>
</tr>
<tr>
<td>CAMPEX</td>
<td>2018</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>FIRE-X</td>
<td>2018</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

- Airborne HSRL measurements acquired during more than 450 flights since 2006
- HSRL-1 operations began 2006
- HSRL-2 operations began 2012
- DIAL/HSRL operations began 2012
- Additional flights planned over North Atlantic (2017-2018) and South Atlantic (2016-2018)
Coincident HSRL and AERONET measurements of AOT compare well

- HSRL 0-7 km layer AOT values were compared with column AOT (355 and 532 nm) values from AERONET stations when HSRL was within 2.5 km and 10 minutes of site
 - (532 nm) Slope 0.94-1.08, Intercept 0.01-0.03, R=0.98-0.99
 - (355 nm) Slope 0.94-1.04, Intercept 0.03, R=0.98-0.99
- Bias differences ~ 0.01-0.04
Mixed Layer Heights and Median Aerosol Profiles
Comparison of Mixed Layer Heights from HSRL-1 and WRF-Chem during CALNEX and CARES

- Mixed Layer (ML) heights derived from daytime-only cloud-screened aerosol backscatter profiles measured by HSRL
- Technique uses a Haar wavelet covariance transform with multiple wavelet dilations to identify sharp gradients in aerosol backscatter at the top of aerosol layers (adapted from Brooks, JAOT, 2003)
- Automated HSRL algorithm chooses ML from among aerosol gradients in HSRL backscatter profiles with input from manual inspection where necessary
- ML heights computed for 15 science campaigns (212 flights) since 2006
- WRF-Chem had low (~150 m) bias in Los Angeles region (CALNEX); smaller bias (~30 m) in flatter central Valley (CARES)

Scarino et al., 2014, ACP
Comparison of Mixed Layer Heights from HSRL-2 and GEOS-5 during SEAC4RS

- DIAL/HSRL boundary layer heights from aerosol backscatter gradients
- GEOS-5 boundary layer heights from thermal diffusivity and aerosol backscatter gradients were about 500-600 m higher than those derived from HSRL-2 and DIAL/HSRL
• AOT profiles and ML heights computed for four DISCOVER-AQ missions
• DC-Baltimore had largest median column AOT values
• Median AOT values in the later three campaign were comparable
• With exception of San Joaquin Valley, median profiles show that about only about 20-65% of AOT was within mixed layer; much of AOT was above mixed layer
• In San Joaquin Valley, most (>80%) of AOT was within mixed layer
HSRL – ECMWF Comparisons
ECMWF model results and HSRL measurements were compared along the King Air flight tracks for 17 field missions conducted over North America since 2006.

Comparisons include:
- AOT in the 0-7 km column
- Aerosol extinction profiles
- Fraction of AOT and extinction due to natural (ice, pure dust, marine) and anthropogenic (polluted marine, urban, smoke, fresh smoke) aerosols
- PBL height (mixed layer height from HSRL used as proxy for PBL height)
- Fraction of AOT within the PBL
Aerosol Extinction Profile Comparison

- Considerable variability in aerosol extinction profile comparisons
- Best agreement found in the PBL
- ECMWF often has higher extinction in free troposphere, especially over the western USA
Overall, ECMWF PBL heights are generally about 100-200 m higher than HSRL ML heights.

Fraction of AOT within the PBL is about the same.
DIAL/HSRL Comparisons with ECMWF/MACC-III During SEAC4RS
Evaluating the impacts of MODIS AOT assimilation

- Aug. 19 case had extensive smoke layers from CA, OR, ID fires
- Aug. 27 had Rim Fire smoke
- Assimilation of MODIS AOT reduces aerosol extinction profiles in some sections of these flights
- Reductions in aerosol extinction vary with altitude
Evaluating the impacts of CALIOP profile assimilation

- Assimilation of CALIOP profiles slightly reduces extinction profiles in some locations; largest extinction values remain near surface.
- Depending on location, these reductions can improve or worsen agreement with HSRL.
Evaluating the impacts of smoke injection heights computed from plume rise model

- Injection heights for smoke emissions are estimated using Plume Rise Model (based on Freitas et al., 2007)
- This plume rise model uses MODIS FRP and modelled atmospheric profiles with a shallow convection scheme to represent detrainment from fire plume
- Initial comparisons show that both aerosol extinction and AOT increase throughout the profile, not necessarily at smoke height shown in DIAL/HSRL profile

Rémy et al., ACPD, 2016
Evaluating the impact of higher model resolution

- Model resolution increased from T255 (80 km) with 60 vertical levels to T1279 (16 km) with 137 vertical levels.
- Higher resolution represents smoke altitude better than assimilating MODIS AOT or using plume rise model.
DIAL/HSRL Comparisons with GEOS-5 During SEAC4RS
SEAC4RS Aug. 19, 2013 DIAL/HSRL Smoke flight over Midwest

DIAL/HSRL

Extinction

Lidar Ratio (532 nm)
~2000 km

Backscatter Ang. Expo. (1064/532)

Aerosol Depol (532 nm)

GEOS-5

Extinction

Lidar Ratio

Backscatter Ang. Expo.

Aerosol Depol
DIAL/HSRL and GEOS-5 Median Backscatter and Extinction Profiles During SEAC4RS

GEOS-5 shows slightly higher backscatter and extinction in free troposphere

SEAC4RS Aerosol Backscatter 532 nm all cases

SEAC4RS Aerosol Extinction 532 nm all cases

Solid Line = Median
Shaded = 25-75%

Aerosol Backscatter

Aerosol Extinction
Both DIAL/HSRL and GEOS-5 intensive parameters vary with altitude suggesting aerosol type varies with altitude.

Backscatter Angstrom exponent increasing with altitude suggests decreasing particle size with height.

GOES-5 lidar ratio higher than DIAL/HSRL.

DIAL/HSRL measured more nonspherical particles (i.e. dust) near the surface than represented by GEOS-5.
AOT Apportionment to Aerosol Type
(Sep. 6) Colorado to Houston

- DIAL/HSRL were used to apportion AOT to aerosol type
- Low AOT over SE Colorado comprised entirely of dusty mix
- Higher AOT over SE Texas comprised of combination of urban and smoke
AOT Apportionment to Aerosol Type (Sep. 6) Colorado to Houston

- DIAL/HSRL were used to apportion AOT to aerosol type
- Low AOT over SE Colorado comprised entirely of dusty mix
- Higher AOT over SE Texas comprised of combination of urban and smoke
HSRL aerosol types relate to GEOS-5 aerosol components

- DIAL/HSRL were used to apportion AOT to aerosol type
- Low AOT over SE Colorado comprised entirely of dusty mix
- Higher AOT over SE Texas comprised of combination of urban and smoke

<table>
<thead>
<tr>
<th>Aerosol Type</th>
<th>GEOS-5 OC fraction</th>
<th>GEOS-5 BC fraction</th>
<th>GEOS-5 Sulfate fraction</th>
<th>GEOS-5 Dust fraction</th>
<th>GEOS-5 Sea Salt fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dusty Mix</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure

- HSRL Aerosol Type
- GEOS-5 BC fraction
- GEOS-5 OC fraction
- GEOS-5 Sulfate fraction
- GEOS-5 Dust fraction
- GEOS-5 Sea Salt fraction
Preliminary DIAL/HSRL Comparisons with Navy NAAPS Model During SEAC4RS
Comparison of NAAPS and DIAL/HSRL aerosol extinction profiles during SEAC4RS

- Aug. 19 case had extensive smoke layers from CA, OR, ID fires
- Aug. 27 had Rim Fire smoke
- Model (with MODIS assimilation) generally gets profile shape and magnitude – misses some of smoke plume peaks
Comparison of NAAPS and DIAL/HSRL aerosol extinction profiles during SEAC4RS

- Median NAAPS profile shape in good agreement with DIAL/HSRL
HSRL-2 Multiwavelength Aerosol Retrievals
Example of Airborne HSRL-2 “$3\beta+2\alpha$” Retrievals

- Aerosol Backscatter (355, 532, 1064 nm) (3β)
- Aerosol Extinction (355, 532) (2α)

- Multiwavelength lidar retrieval algorithms (e.g. Müller et al., 1998, 1999, 2001; Veselovskii et al., 2002) used to retrieve effective radius and concentration
- Optimal estimation routines under development to combine lidar and polarimeter data to also retrieve refractive index and absorption

Müller et al., 2014, AMT
HSRL-2 Multiwavelength Aerosol Retrievals (Jan. 31, 2013)

- HSRL-2 multiwavelength measurements of aerosol backscatter and extinction were used to retrieve fine mode aerosol volume concentration and effective radius (e.g. Müller et al., 2014)

- Sawamura et al. (ACPD, 2016) shows the retrievals compare reasonably well with P-3 airborne in situ data
HSRL-2 Retrievals of PM$_{2.5}$ Over Central California (Jan. 31, 2013)

HSRL-2 multiwavelength retrievals of fine mode volume concentration were used with assumed particle density to derive PM$_{2.5}$.

Near-surface derived PM$_{2.5}$ compares well with hourly measured surface values.
Ground-Based Multiwavelength “3β+2α” Aerosol Retrievals

DOE ARM acquired demonstration “3+2” dataset over ARM SGP site in northern Oklahoma during July-September 2015 using DOE SGP Raman lidar and UW HSRL to test feasibility of remotely retrieving aerosol microphysical parameters 24/7

Aerosol Backscatter (355, 532, 1064 nm) (3β)

Aerosol Extinction (355, 532) (2α)

Effective Radius [μm]

Fine Mode effective radius [μm]

Surface area conc. (fine) [μm²/cm³]

Volume conc. (fine) [μm³/cm³]

Combined HSRL And Raman lidar Measurement Study (CHARMS)
Summary

- NASA LaRC Airborne HSRLs provide calibrated data products for evaluating models:
 - Aerosol extinction, backscatter, depolarization and AOT profiles
 - Mixed Layer heights
 - Qualitative aerosol classification
 - Retrievals of effective radius, concentration, PM\textsubscript{2.5}

- Much of AOT is often above the daytime mixed layer

- Median ECMWF/MACC and GEOS-5 model extinction profiles in agreement with median DIAL/HSRL profile

- Increased model resolution sometimes improves agreement with DIAL/HSRL

- GEOS-5 simulations of aerosol depolarization are biased low – model misses local dust

- Both GEOS-5 and airborne HSRL data show aerosol intensive properties vary with altitude during SEAC4RS – likely due to smoke aloft

- HSRL measurements of aerosol intensive parameters may help in evaluating model representations of aerosol speciation

- We plan to continue such model evaluations using HSRL data from recent (ex. KORUS-AQ) and future (ex. NAAMES, ORACLES) field missions
HSRL measurements used to assess model representations of AOT in free troposphere

- WRF-Chem (v3.7) and CAM5 model representations of aerosols in the free troposphere were examined during DOE TCAP mission (2012)
- Higher resolution WRF-Chem model produced more aerosols in free troposphere in better agreement with HSRL-2 than coarser resolution CAM5 model

Contribution to AOT by aerosols in free troposphere

(Fast et al., submitted to JGR, 2016)
Comparison of Median Profiles with and without CALIOP assimilation

- Median profiles and histograms for entire mission
- Median profiles in good agreement with MODIS AOT assimilation
- Adding CALIOP:
 - produces relatively minor effects on median profiles
 - tends to lower the AOT with respect to runs that assimilate only MODIS AOT – slightly better agreement with HSRL
Evaluating the impact of higher model resolution

- Increasing number of vertical levels increased extinction in mid troposphere

60 levels

91 levels

![Graph showing extinction in mid troposphere with 60 and 91 levels]
AOT Apportionment to Aerosol Type (Sep. 6) Colorado to Houston

- DIAL/HSRL were used to apportion AOT to aerosol type
- Low AOT over SE Colorado comprised entirely of dusty mix
- Higher AOT over SE Texas comprised of combination of urban and smoke
SEAC4RS vertical apportionment of HSRL aerosol type and GEOS-5 aerosol components.
GEOS-5 aerosol components are consistent with HSRL aerosol types
Input: aerosol backscatter (3λ) and extinction (2λ): “$3\beta + 2\alpha$” profiles

Data inversion with regularization (Müller et al., 1998, 1999, 2001; Veselovskii et al., 2002)
 – Assumes spherical particles; nonspherical particles retrievals are under investigation

Outputs: effective radius (total, fine, coarse), concentration (number, surface, volume), scattering, absorption coefficients